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Present-day notions about the mechanism of the evolution of a cavitation cluster, i.e., 
a swarm of minute vapor-gas bubbles, in a sound field (e.g., in the focal region of a "con- 
centrator" or acoustic velocity transformer) are based on the instability of the shape of 
the bubbles during their explosionlike expansion and rapid collapse (implosion). It is 
assumed that instability induces bubble disintegration and, hence, an avalanche-type multi- 
plication of cavitation centers [I]. It has been postulated, on the basis of an analysis 
of high-speed motion pictures of the process [i], in particular, that the number of bubbles 
in the visible cavitation zone can be many orders of magnitude greater than the number of 
initial cavitation nuclei as determined, e.g., according to Gavrilov's procedure [2]. Experi- 
ments indicate that this effect is dynamic: During the first few periods after application 
of the sound field, the number of bubbles is consistent with the number of nuclei expected 
according to the state of the liquid, but then it increases and arrives at a steady state, 
which is governed by the characteristics of the field and the liquid [i]~ 

However, it is difficult within the framework of this approach to explain the occurrence 
of a uniform spatial distribution of the fragments of a bubble when it is disintegrated 
as a result of instability [i]. On the other hand, in underwater-explosion experiments, 
e.g., an instability is also recorded in the shape of the cavity containing the detonation 
products, which resembles a bubble swarm at the instant of its compression. But this forma- 
tion does not subsequently disintegrate into separate elements and is certainly not uniformly 
distributed in the near field [3]. Another phenomenon can be cited, viz.: A zone of intense 
bubble cavitation emerges near a free surface when a shock wave is reflected from it, despite 
the fact that the only stimulus is a single rarefaction pulse [4] and "ultrasonic pumping" 
of the zone of the nuclei (by an instability mechanism) is absent. The abrupt visible varia- 
tion in the m~nber density of bubbles in a zone near the surface of an underwater acoustic 
transducer as it approaches a rigid wall can be classified as a phenomenon of the same order 
[5, 6]. The maximum radii of the visible cavities in this case are much smaller than for 
a distant transducer [5]. 

Obviously, the state of the liquid in the cited experiments is recorded at a time when 
the cavitation nuclei reach a visible size corresponding to resolution with a definite degree 
of accuracy. Ultrasonic cavitation experiments have shown that the cavitation cluster pul- 
sates, vanishing periodically from the field of view [6]; the bubbles collapse to a size 
below the resolving power of the instrumentation. Thus, the inception and dynamics of the 
cavitation zone are viewed as being associated with the "lifetime" of a bubble of visible 
radius. 

In this article we investigate the conditions and time for the bubbles to reach a visible 
size in the case of a broad theoretically possible spectrum with respect to their initial 
radius. 

A theoretical analysis of the cavitation-initiation process under the action of a nega- 
tive pulse of constant amplitude is carried out within the framework of the definitions 
of [7, 8] in the example of single-bubble dynamics. Cavitation is considered to be fully 
developed when the bubbles attain a radius of -10 -2 cm, which is taken as the visibility 
threshold. It is shown that the presence of gas in the bubbles has a definite influence 
on the threshold values of the pressure difference capable of initiating their unbounded 
growth. 

Statement and Qualitative Analysis of the Problem 

The dynamics of a spherical bubble in an unbounded ideal incompressible liquid is known 
to be described by the equation 
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" +[( =~ 
aa + T = Po + a (i) 

where p is the density of the liquid, ~ is the bubble radius, the index 0 indicates the 
initial values of the radius and the hydrostatic press, o is the coefficient of surface ten- 
sion, 7 is the polytropy index of the gas, and p ~ is the pressure at infinity. It is assumed 
that at time t = 0 the quantities ~(0) = d0, ~(0) = O, and p~ drops instantaneously by the 
amount Ap, i.e., p~ = P0 - Ap. It is required to determine the spectrum of initial radii 
of bubbles that can attain visible size for a given p~, along with the time for them to 
attain that size. 

It is convenient to introduce dimensionless variables and parameters according to the 
expressions R = a/aV, R0 = ao/aV, V = R 3, V 0 = R03, t' = tc0/aV, p = P~/P0, We = 2o/P0aV, 

= p0/p0c02, where aV is the just-visible bubble radius and c o is the unperturbed sound 
velocity in the liquid. Equation (i) is rewritten in the form 

Nh q-y3 h~ = a] [(1 + We/R0)(No~B) ~ - -  p - -  WeiR]. (2) 

The f i r s t  i n t e g r a l  o f  Eq. (2) w i th  r e s p e c t  to  the  bubble  volume V i s  a l r e a d y  o b t a i n e d :  

V-~/~#  = = 6~F(V~ r e ,  p) .  (3) 

Here, if y ~ i, 

1 + W.e v S "  w ~ We (V ~/~ V ~/=~ F =  -~-_-~ - o ( V ~ o - ~ - V ~ - V ) - p ( V - V o ) - - r  , ,.. 

and if ~ = i, 

F = (1 § We v ;  ~/= ) Vo in (V/Vo) - p (v  - re) ~- -~3 wetv""'"=/= - v~o/~). 

The right-hand side of Eq. (3) describes a family of curves that depends on the parameters 
V 0 and p. Clearly, a solution can exist for it only for intervals of the curves in which 
F ~ 0. For the quantitative analysis of the possible solutions it is useful to write the 
derivative 

F V (t + We V~ -~/s) (Vo/V)  v - -  We V -~/s - -  p .  

The functions F and FV have the properties 

r ( 0 ;  Vo, p )  = - -  ~ ,  F(Vo;  V o, p)  = 0 , / % ( 0 ;  r e ,  P) = co, 

F~.tV,,; r e ,  2*)'= I - -  p ,  F~.(oo; re, p) = --P. 

We partition the interval of values of p into two subintervals: 0 <_ p < i and p < 0. For 
p _> 0 (the form of the function F is represented by curve 1 in Fig. la), the bubble volume 
oscillates between the values V 0 and V=. If V 2 = I, we deduce the following expression 
from the condition F(I; V0, p) = 0 (curve DE in Fig. ib): 

I -- V~o/a t + W~ V~ V~~ V'~ i . ~  -- F o 23 W e ~  = f(We, Vo) , 

which in the pulsation regime determines the threshold at which the bubbles reach visible 
size, i.e., for p ! f(We, V 0) (domain ~i in Fig. ib) all the bubbles reach visible size, 
and for p > f(We, V 0) (domain ~2) they do not. Let p < 0. The existence of threshold pres- 
sures, at which unbounded bubble growth takes place and the so-called unbounded-growth curve 
is obtained, has been proved [8]. The indicated curve is specified in the parametric form 

F(V.;  Vo,. p) = Ok,. F v ( V . ;  Vo, p) = 0 (4) 

with the parameter V, (Fig. ic) and is represented schematically by curve BAC in Fig. lb. 
This curve determines the threshold above which the bubble grows without bound. The value 
V = V, corresponds to the maximum radius, toward which the bubble tends asymptotically in 
infinite time. In the V0p plane, curve (4) separates the domain ~3 of periodic bubble pulsa- 
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tions from the domain E4 in which the bubble grows without bound and, hence, necessarily 
reaches visible size from the point of view of the given model. The bubbles pulsate in 
the domain ~s in this case, reaching visible size. It can be shown that F(I; V0, p) = 0 
is tangent to the unbounded-growth curve BAC at point A, where V, = i. Accordingly, BAE rep- 
resents the boundary of the domain in which the bubbles reach visible size for all possible 
values of p. 

Results of Calculations 

The calculations of the microbubble dynamics were carried out according to Eq. (2). 
The time for a bubble to grow to visible size is given by the integral 

I 

V-1/6dV 

go 

In the example of a nucleus with initial radius n 0 = 10 -4 cm, Fig. 2 shows typical features 
of its behavior in dimensioned form for various values of the negative amplitudes of the 
tensile stresses relative to P0 = 10s Pa: i) p = -i0; 2) -I; 3) -0.5; 4) -0.i. As the 
tensile stresses are increased, we observe a transition from nonvisible pulsations (curves 
3 and 4) to unbounded expansion with attainment of the visible radius aV = 10 -2 cm (curves 
1 and 2). Figure 3 shows the time T, for the bubble to reach visible size as a function of 
the tensile-stress amplitudes (a 0 = 10 -4 cm). These data evince a rather steep gradient 
of the function in a narrow zone of values of p close to the threshold of asymptotic bubble 
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TABLE i 

ao, cm RV lr~ 

3.16.10-~ 

3J6 . I0 -4  
10-4 

1.58--3,16 

�9 '5--10 
~ 15.8--31.6 

50--61.6 * 

3.25--31 

5--18 

9--13 

i0.8--12.43 

growth. For example, T, = 18.8 Dsec at p = -0.55, and at p = -0.5 (curve 3 in Fig. 2) the 
nucleus pulsates with ama x = 2a0, while at p = -0.516 its radius tends asymptotically to 
the value a = 3a0, i.e., it essentially does not reach visible size. 

The calculation of the time T, for a cavitation nucleus to reach the visible radius aV 
has made it possible to discern two fundamental features: For small negative tensile-stress 
amplitudes, T, depends significantly on ao; for large negative amplitudes, nuclei with prac- 
tically the entire range of initial radii attain the visible radius simultaneously. 

Indeed, for p = -0.i (Fig. 4), nuclei with an initial radius a0 = 5"10 -3 cm attain 
visible size in 12.5 ~sec, and those with a0 = 5"10 -4 cm attain it in 47.5 ~sec. The dashed 
line represents the boundary at which the initial radius of a nucleus can grow to the visible 
radius for a given value of p. We see that this line is the asymptote of the function 
T,(a0): T, + ~ for a0 = 4.3"10 -4 cm. 

Figure 5 shows curves of the function T,(a 0) for relatively strong unloading: i) p = 
-5; 2) -I0; 3) -15; 4) -20; 5) -25. Comparing the data of Figs. 2, 3, and 5, we infer that 
unloading with a constant amplitude p = -5 representing the "upper bound" can be regarded 
as the threshold at which practically the entire spectrum of initial cavitation-bubble radii 
attain the visible radius a V = 10 -2 cm simultaneously. In a real situation, the cavitation 

zone transforms the applied stress field. 

Both of the indicated features have a direct bearing on the visible chain-reaction 
effect of the "multiplication" of cavitation centers, the mechanism of which is determined 
not so much by instability of the shape of the pulsating cavitation bubbles and their dis- 
integration as by the possibility and time lag of the process of small bubbles reaching 
visible size from the spectral composition of the cavitation nuclei. Of course, the defini- 
tion of the "visible" bubble radius is conditional, because it must be a quantity that can 
be reliably resolved within the scope of the particular experimental procedure in every 

specific situation. 

These considerations and conclusions apply to ultrasonic cavitation to a certain ex- 
tent. As an example, we consider data from an investigation [9] of single-bubble dynamics 
in an ultrasonic field specified in the form p~ = P0 + AP0 cos ~t, where A > 0 and the process 
begins in the compression phase (quarter period). For A = 1.5 (corresponding to p = -0.5 
at the maximum of the negative phase) and m = 116 kHz, the visibility-attainment time of 
the nuclei varies in the interval T, = 20-42 Dsec for a variation of their radii from 8.6" 
I0 -s to 8.6"10 -4 cm. Visibility is attained practically in the first unloading phase (wave 
period of 54 ~sec). With an increase in A, even with a simultaneous increase in the frequen- 
cy ~ of the field, a tendency is observed for a fairly broad spectrum of cavitation nuclei 
to reach visible size simultaneously. For example, in the case A = 5 and m = 450 kHz, the 
visibility-attainment time varies only in the interval 7.4-12.3 ~sec for a 30-fold variation 
in the value of ao (ao = 7"10 -3 to 2.2"10 -4 cm). 

Because of a certain indeterminacy in the values of av, it is convenient to analyze the 
distinctive features of the process of bubbles in a given size range attaining visibility. 
An interesting effect is observed in this case for A = 5 and ~ = l0 G Hz for the interval 
a V = 5.10 -s to 10 -2 cm. 

Table i shows the intervals of visibility-attainment times T, = mT, for various inter- 
vals of relative just-visible bubble radii RV = av/ao. The asterisk indicates the case R = 
Rmax. For large initial radii of the cavitation nuclei, T, increases abruptly (by an order 
of magnitude) as the values of a V vary in the visible interval from 50 to i00 um. With 
a decrease in a0, the interval for T, becomes narrower with an increase in the lower bound 
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and a decrease in the upper bound. It can be expected on this basis that the time to attain 
visible size will stabilize in approximately two periods of bubbles having a radius of 1 
~m or smaller. It is important to note the explicit dependence of the visibility-attainment 
time on the initial radius: For R 0 = 31.6 Dm the bubbles reach the lower bound of visible 
radii in approximately half a period, and for R0 = 1Dm they do so at the end of the second 
period. 

The foregoing analysis shows that three characteristic types of bubble dynamics occur 
in a field of constant tensile stresses: oscillations; monotonic growth to an asymptotic 
value in infinite time; unbounded growth. As a result of the calculations, we have plotted 
the visibility-attainment curve, which determines the threshold pressures initiating the 
growth of bubbles to visible size. It is found that the time for a bubble to attain visible 
size depends significantly on a0 for small applied-unloading amplitudes. The interval of 
values of a0 admitting such an attainment is finite. For large amplitudes, bubbles having 
the entire spectrum of initial radii are observed to reach visible size practically simul- 
taneously. Bubbles in a high-frequency ultrasonic field are characterized by similar effects. 

Thus, if inhomogeneities at which a cavitation cluster can develop exist in a real 
liquid with a number density of the order of 105 to 106 cm -3, the evolution of the cluster 
with time into a visible structure is determined by the nature and parameters of the rarefac- 
tion phases of the wave field and is manifested either in "instantaneous" arrival at the 
maximum bubble density (as in the case of reflection of a strong shock wave from a free 
surface) or in the gradual saturation of the cluster with bubbles as a result of the succes- 
sive attainment of the visibility zone by smaller and smaller nuclei. 
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